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On surface gravity waves crossing weak current jets 
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(Received 24 February 1981 and in revised form 24 May 1983) 

Variations in wave amplitude and steepness across current jets have been described 
for broad smooth-sided jets. Here, narrow jets are modelled by a top-hat pattern; 
an approximate solution is found for linear waves, based on conservation of wave 
action and vertical averaging. The results join remarkably well to those for a broad 
cosine-shaped jet (cf. McKee 1975). For jet widths less than about a third of a 
wavelength, there is little change in amplitude ; the enhancement predicted by a WKB 
analysis is suppressed owing to interference with reflections from the far side of the 
jet. For directional spectra not too different from cos2 8 ,  some suppression occurs near 
the middle of jets of all scales, owing to exclusion of the glancing wave components 
by reflection from the near side ; this suppression can be significant for jets more than 
a wavelength wide. For monochromatic waves, maximum amplitudes occur some 
distance outside the jet owing to interference; the net reflection appears to have a 
positive phase shift along the near caustic of about 1 cycle. 

1. Introduction 
Waves are refracted as they cross a current pattern, and in general the amplitudes 

and wavelengths also vary. A WKB analysis indicates that wave amplitudes would 
be greatly enhanced within downwind current maxima; for example, along the 
‘streaks ’ associated with Langmuir circulation (Garrett 1976). This enhancement, 
which is also suggested by the observations of Myer (1971), could lead to a preferential 
tendency toward wave breaking along such current jets, and hence a systematic 
variation in the effective stress felt by the mean flow. This stress variation, Garrett 
(1976) suggests, could in turn reinforce the downwind jetlike flow, and aid in the 
formation of horizontal roll vortices such as those described by Langmuir (1938). 
However, even infinitesimal currents produce singularities in the WKB solution for 
waves travelling in nearly the same direction as the current jet. Also, scales of 
observed Langmuir circulation vary from small to large compared with the wave- 
length. Thus the WKB approach is not valid. 

In this paper a top-hat current pattern (i.e. potential flow between two parallel 
vortex sheets) is used to model narrow jets, and the results are compared with and 
joined to McKee’s (1975, 1977) results for a broad jetlike flow (using a cos2x profile), 
allowing for possible caustics. 

There are six dimensionless numbers of potential interest : 
(1) the incident angle (between the directions of the component wavenumber k and 
the jet axis) ; 
(2) the along-axis current strength v/c (where c is the phase speed of the wave 
component in the far field) ; 
(3) the (convergent) cross-jet horizontal velocity u / c  ; 
(4) the scale width kL of the current; 
(5) the scale depth kD of the current; 
(6) the total water depth kH (which may be larger than the current depth). 
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To simplify the problem we shall neglect the convergent current u/c and one or both 
of the depth scales kD, kH. Garrett (1976) showed that, in the WKB limit with weak 
currents, the crossjet component u / c  is less important to the action balance than v/c ,  
and there is reason to suppose it remains unimportant here; in any case we neglect 
u/c in this work. For weak currents (v/c 4 1)  in infinite depth, the current can be 
vertically averaged to find the effective rate a t  which the wavetrain is advected (cf. 
Stewart & Joy 1974): 

0 

Ueffective 2k ~ - m ~ ( ~ ) e z k ’ d z  (1 .1)  

(i.e. the velocity by which the wave phase and group speeds are altered). 
The formulation is given for uniform depth kH and with v /c  independent of depth; 

i.e. for ED = kH.  Interest focuses on deep water (kH % l ) ,  especially since (1 .1)  may 
then be used when the current varies with depth. 

The remaining three parameters are 
( 1 )  the incident angle 8, 
(2) the current strength v/c, and 
(3) the scale width of the current, kL. 
The incident wave angles pertinent to the study of the interaction of wind waves 

and wind ‘streaks ’ or ‘Langmuir circulation ’ cover the downwind direction (and 
hence downjet), and the wave spectrum is taken here to be roughly symmetric about 
the jet. The associated downwind current maxima are observed to be up to about 
0.01 times the windspeed W ,  whereas the phase speed of the dominant waves is 
comparable to W.  Since we should also consider waves shorter than those dominant, 
we shall examine a range for v /c  from 0.001 to 0.1. Most significant is the wide range 
of kL, from very small to very large. Only large-kL cases have so far been studied 
theoretically (e.g. McKee 1975, 1977 ; Peregrine 1976; Smith 1976). 

For small kL we appeal to the problem of linear waves incident on two parallel 
vortex sheets, separated by a distance 2L, between which there is a uniform potential 
flow (a ‘top-hat jet’; see figure 1) .  Although such sheets are unstable (Miles 1958; 
Jones & Morgan 1972), this shouldn’t affect the present analysis, which doesn’t allow 
time variations other than in phase, and which is intended to simulate thin shear 
layers rather than vortex sheets per se. Also, since the current change ‘v’ is smaller 
than the phase speed c of the waves, no overreflection occurs. 

The case of waves incident on a single discontinuous change in velocity was studied 
by Evans (1975). Away from values of v/c and 0 for which the WKB solution is 
singular, Evans found the reflection to be small, so that the differences from the WKB 
solution are small. 

As we shall see, the two-sheet solution also approaches the WKB solution where 
appropriate. 

The formulation of this two-sheet problem ($2) follows closely that given by Evans 
(1975). This involves both ‘primaries’ (which have the traditional form for surface 
waves) and some additional modes trapped to each vortex sheet. 

As pointed out by Evans (1975) for the single-vortex-sheet problem, the net flux 
of wave action across a sheet is conserved (see also Hayes 1970; Andrews & McIntyre 
1978). This constraint, along with an assumption that the same vertical average 
(unspecified) applies to both the pressure and horizontal displacement conditions a t  
each sheet, is sufficient to determine the magnitude of the incident and reflected 
primaries at each sheet. Phase changes at each sheet are neglected, and the effect of 
the trapped modes is modelled by exponential smoothing (cf. Smith 1980). This 
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‘ smoothed action-inspired model ’ (SAM) is then used to calculate the amplitudes for 
various values of the three parameters (current strength and width, and incident 
angle). 

For large EL (i.e. for current jets broad compared with a wavelength), the work 
of McKee (1974, 1975, 1977) is pertinent. For very broad jets and glancing waves 
(small incident angles), the behaviour should approach that for a single caustic (i.e. 
the reflection is nearly complete; cf. McKee 1974, hereinafter referred to as M74). For 
broad weak jets and as the incident angle increases toward perpendicular, the 
behaviour should be well described with a WKB-type model (‘ WKB ’ ; i.e. when there 
is negligible reflection). In between, the full double-caustic models developed by 
McKee (1975, 1977) must be considered. McKee’s 1977 model is aimed at  the nearly 
degenerate cases, with either two closely spaced caustics or none; his 1975 model is 
formulated strictly for two real caustics. Since the 1977 model results approach 
neither M74 nor WKB in the appropriate limits, McKee’s 1975 model (which does 
approach M74 as reflection becomes complete) is here extended to include ‘imaginary 
caustics’ (i.e. no real caustics). This simple extension (‘M75’) reproduces the 1977 
results where appropriate, and also joins onto the WKB model smoothly. Although 
this version of McKee’s 1975 model is the only broad jet model strictly required, it 
is computationally convenient to use M74 and WKB when possible. 

The narrow- and broad-model results approach each other in a sensible way with 
kLN = kLB.  Also, a gap along the log k L  axis of roughly half a decade in EL allows 
the results to be joined smoothly by interpolation. The ‘best ’ (by eye) location for 
this gap between the narrow and broad jet models depends on both the velocity and 
the incident angle. 

The results show that the wave reflections appear to be advanced in phase at  the 
closer caustic by nearly a cycle, relative to the incidence wave. The locations of the 
nodes and antinodes vary sufficiently with incident angle that, for reasonable 
directional spectra, they essentially cancel out, leaving only a WKB-type amplification 
along the borders of broad jets. 

Owing to exclusion by reflection of the components propagating nearly parallel to 
the flow direction, the amplitude in the middle of a downwind-directed current jet 
is actually reduced relative to that outside (assuming a directional spectrum not 
unreasonably different from cos2 0 do). The net reduction is greater for broad jets, 
and hardly significant for narrow jets; the transition occurs around k L  = 3, or a jet 
width of about 1 wavelength. For v/c = 0.001, this reduction only amounts to 1 yo 
or so, but, for v/c = 0.1, the wave energy at the centre of a broad jet may be cut in 
half. 

2. Formulation for two vortex sheets 
The formulation follows closely that of Evans (1975). Define the x-axis perpendicular 

to the jet, with the mean positions of the two vortex sheets at x = + L and - L.  y 
increases downstream, and z increases upwards. The leftmost region (x < - L )  is 
denoted by the subscript 1 (e.g. V ,  k ,  etc.); the middle is denoted by 2,  and the 
rightmost ( x  > L )  by 3 (see figure 1). The mean velocities of the outer regions are 
taken as zero. 

A velocity potential is defined by 

(2.1) 
1 ( x < - L ) ,  

@,= V,y+$,(x,y,z, t) ,  n =  2 ( - L < x < L ) ,  
1 3  (x> L),  
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FIGURE 1. Schematic of a top-hat jet in finite-depth water. The vortex sheets a t  + L  deform 
horizontally, and partial reflection occurs a t  each sheet. 

where the 4, are the wave potentials, assumed small enough to neglect second-order 
terms. The actual position of the free surface relative to the mean, 7, is also assumed 
to be small compared with other vertical scales. 

We assume that the wave motions share a y- and t-dependence of the form 
expiby-t) ,  and define the intrinsic frequency (as observed when moving with the 
mean flow) : 

un = 0-pv,. (2.2) 

As described by Evans (1975), the boundary conditions a t  each vortex sheet 
(continuous pressure, and the sheet moving with the material flow, respectively) 
require, at lowest order in wave amplitude, 

g n  4 n  = ~2 $29 (2.3) 

The surface conditions (pressure and kinematic) combine to provide, at lowest order 
in wave amplitude again, 

Cr,+,---(b, 9 a  = 0 ( z  = 0). 
ua az 

The bottom condition (flat) is simply 

and continuity in the interior becomes 
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Orthonormal solutions to the last 3 equations are provided by the following (cf. 
Miles 1958): 

2kn ]" cash k,(z+ H ) ,  
x n ( z )  = [ 2k, H+ sinh 2k, H 

'kni(z) = [2h,, H + sin 2Ani H 
2An' 1' cos A,,(z + H ) ,  

(2.11) 

(2.12) 

(2.13) 

(2.14) 

Here k, satisfies the regular dispersion relation for surface waves 

gk, tanh k, H = c r i ,  (2.15) 

and the terms @,(x)~,(z) are referred to as the 'primaries'. The terms Ant are the 
ordered positive solutions of 

gh,, tan Ant H = - c;, (2.16) 

and pertain to the 'trapped modes '. Note that, when k, < p ,  qn is imaginary, in which 
case the x-dependences are exponential for the primaries as well as the trapped modes, 
in region 2. 

In the deep-water limit, the solutions of (2.16) become continuous, and we rewrite 
the solutions (cf. Evans 1975) as 

(2.17) 

(2.19) 

cn(z, A )  = C,(h) e-rn(A)z+ D,(h) ern@)z, (2.20) 

where qn is as before, and rni is replaced with r,(h). 
As described in excruciating detail elsewhere (Smith 1980), the problem can be 

reduced to a set of integral equations, as in Evans' 1975 paper. These could be solved 
by (for example) numerical techniques, or alternatively by the sort of Galerkin 
approximation employed by Evans. The results of this last approach are described 
by Smith (1980), and provide a useful comparison for the rather simple model 
described in $3. 

3. An action-based model 
As mentioned in $1, conservation of action flux combined with some vertical 

averaging is sufficient to determine the magnitude of the primaries. Rather than argue 
about which averaging is appropriate, however, we simply assume that the same 
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vertical average applies to both the pressure and horizontal displacement conditions 
at each sheet. Since, for the primaries, these have the same vertical structure, this 
is logically consistent with Evans’ assumption that the motion at  each sheet is 
approximately a linear combination of the primaries alone. This constraint along with 
constant action flux is sufficient to determine the results of the averaging without 
having to consider the details (although this will not provide information about phase 
shifts at  a vortex sheet). Note that this technique doesn’t apply as it is to an abrupt 
change in depth, rather than velocity: a change in depth doesn’t alter the pressure 
condition, but clearly alters the velocity condition, which must enforce constant mass 
flux over the step. In  this case, the depth must enter into the velocity condition in 
a different way from that for pressure. 

The following analysis applies to finite depth, but with a flat bottom. 
Consider first the single-vortex-sheet problem treated by Evans (1975).  This is 

recovered by applying the sheet conditions (2 .3)  and (2 .4 )  at x = 0, and throwing out 
the third region. The (unspecified) vertical average, denoted by ( ), is applied at the 
vortex sheet, yielding new boundary conditions for just the primaries: 

where 

Allowing a unit incident wave from the left, i.e. setting B = 1 and A = 0, we obtain 

a-1 
I4 = ol+l’ 

The equation expressing conservation of wave action in this problem integrates to 

where 

which is the component of the intrinsic group velocity perpendicular to the vortex 
sheet, and F:ght and El,eft are the intrinsic energy densities of the rightward (B,) and 
leftward (A,) progressive wave components respectively. These energies may be 
calculated from, e.g., the kinetic part, taking advantage of equipartition in the 
intrinsic frame (p” is the density of the water) : 

q g h t  = pw J- ~2 dz 
0 -  

H 

11 sinh 2kn H -  2kn H 
= - ~ w l B n 1 2 { q ~ + ~ 2 + k ~ [  sinh 2kn H +  2k,  H (3.10)  
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and likewise 
(3.11) 

(note that this applies in finite depth as well as deep water). 
Conservation 6f wave action thus implies 

(3.12) 

from which it follows that the vertical average must yield 
g 1  y = - ,  
g 2  

(3.13) 

or < x n )  = 1. (An appropriate average satisfying this is the root mean square.) 
The surface elevation amplitude relative to the incident portion of 8, (i.e. to A,)  

is 
(3.14) 

where the hat implies neglect of the trapped mode contributions. Defining the 
transmission coefficient T as the ratio of the elevation amplitudes of the transmitted 
to incident portions of the wave, and the corresponding reflection coefficients (as in 
Evans 1975), the results of this single-vortex-sheet model may be written 

a-1 A=- 
a + l '  

(3.15) 

(3.16) 

In the deep-water limit, these may be compared with Evans' 1975 results (figure 
2). Even for rather stkong currents, of the order of the wave phase speed, the results 
are in good agreement. In  the range of interest here, for currents less than the phase 
speed, they are indistinguishable. 

Phase changes at each sheet are not provided by the above procedure, but would 
influence the net results in the double-vortex-sheet problem owing to the interference 
between the sheets. Evans' results show little phase change in the transmitted waves, 
even with moderate currents, and changes of less than 1, in the range of interest. The 
reflections, on the other hand, undergo much greater phase changes. It is convenient 
to define R with the same sign as a-  1 ,  i.e. negative for opposing currents, so that 
the phase changes are continuous through zero velocity. For the larger incident angles 
(e.g. 75O), significant phase changes occur with moderate currents; however, for cases 
where the phase change isn't small, the magnitude of the reflection is small. Thus, 
especially when considering a directional spectrum concentrated about the jet 
direction, good results are expected neglecting such phase shifts. 

Now we return to the double-vortex-sheet model, using the simplified conditions 
(3.1) and (3.2) at each sheet. Allowing a unit incident wave from the left (i.e. B, = 1 
and A,  = 0 ) ,  and assuming no phase shifts, the results may be written 

A ,  = - ~ ( a - ~ ) s i n ( 2 q , L ) B 3 ,  

(3.17) 

(3.18) 

(3.19) 

(3.20) 

10 F L M  134 
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FIGURE 2. Reflection and transmission vs. v/c for the single vortex sheet problem. Evans' (1975) 
results are shown in solid lines, the simpler model in dashed lines: (a) (RJ vs. v/c, (b)  IT1 vs. v/c, both 
for v/c = -3 to +2. In the expanded plots (c) and (d), for v/c = -0.3-+0.2, the two results coincide 
to within the accuracy of the plot. 

(C) vlc (4 ulc 

Referring to (3.14), the squared magnitudes of the surface amplitudes relative to 

(3.21) 

the unit incident amplitude are 

ci?Jz) = (1 + r2d2)-' = N ,  

cii(z) = Nn,(l +2adsin2q2(L-z)), (3.22) 

(3.23) a;@) = N{1+ 2rd[rd+ rs cos 2q1([4 - L) + t sin 2q1((z[ - L ) ] ) ,  
where 

t = cos2q2L, r = sin2q2L, 

(3.24) 

no = k 2 / k , .  

When considering a wavefield symmetric about the current direction, it is easier 
to evaluate the sum of the squared amplitudes of the symmetrically incident 
components : 

I?,@) = 1 + N r d [ r s c o s 2 q l ( ( z ( - L ) + t s i n 2 q l ( ~ x ~ - L ) ]  (1x1 > L) ,  (3.25) 

Note that, even when q2 is imaginary, the results remain real. 
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As mentioned above, the double-vortex-sheet problem can also be solved with 
Evans’ approximation, requiring in this case a numerical integration. This provides 
axross-check for the above, allowing the phases of the primaries to be evaluated, and 
also the amplitudes of the trapped modes, especially with respect to surface elevation. 
The predicted amplitudes of the primaries again agree remarkably well between the 
Evans-type model and the action-type model; for the weak jets of interest here, 
neglect of the phase shifts at each sheet appears to be justified. The effect of the 
trapped modes is to introduce roughly an exponential smoothing. The details are too 
complicated to be useful here ; however, the deep-water contribution at  the surface 
relative to the incident elevation amplitude A as in (3.14) reduces to 

where 

cosh rx sinh rx 
cosh rL 

f2 = &;+€ ; t ) -+g (€1+-€8 ; )7  sinh rL ’ 

(3.27) 

(3.28) 

(3.29) 

f 3 -  = -€$ e-T(l+L), (3.30) 

[Z] = -[ kl -k2 (k1-k k2) 4?( k L)  -2k2 6 3 ,  a I(  (kL)l. k L )  (3.31) 

The simplified smoothing model is obtained by extracting an average value for r 
(recall that r = (p2 + h2)$ from these integrals. Spectral summation of the squared 
amplitudes for a pair of symmetrically incident waves forms H(x) ; this eliminates the 
sinh rz terms to lowest order in Ifi/1.11: 

H,(x) = fil(z)-Me-blz~(ebL-cosheL) (1x1 > L) ,  (3.32) 

k1+k2 ( k l + k z ) 4 , , ( f L ) - 2 k 1  

(3.33) 

M = A,(L)-H,(L).  (3.34) 

(3.35) 

or 

where 

Based on the examination of many cases, the following rough averages for b and c 
are used: 

H 2 ( z )  x &(x) + MepbL coshcz (1x1 < L) ,  

b x 3k,,  

(3.36) 

A typical comparison of these results with those of the Evans-type model is shown 
in figure 3. 

This ‘smoothed action-based model’ (SAM) is compared with and joined to the 
model for broad, cosine-shaped jets, to be described next. 

4. Broad-jet models 
For large kL (broad jets), there are at  least four models to examine: (1) McKee’s 

1974 model (henceforth ‘M74’; for complete reflection), (2) his 1975 model (M75; for 
two real ‘caustics’), (3) his 1977 model (for when the middle of the jet is very nearly 
a double caustic), and (4) a WKB model (WKB). The 1977 model does not approach 

10-2 



286 J .  Smith 

’ * O  I--------- 
0.9995 - 

H (XI 
0.9990 * 

0.9985 - 

0.999 

1.005 

H (XI 

1 .o 

-L +L 
k x  

I I 

k x  

FIGURE 3. Comparison of the mean-squared amplitude of symmetrically incident wave components 
( H ( z ) )  according to the Evans-type model (left column) and SAM (right). The discontinuous lines 
represent the results excluding the trapped modes or the exponential smoothing. 

either M74 or WKB in the appropriate limits. This model uses an additional 
approximation, that the cross-jet component of the wavenumber, be it real or 
imaginary, is small in magnitude compared with the wavenumber of the incident 
wave (in terminology analogous to the top-hat jet, it requires qz < 1/L, or, as defined 
below, (n2-p2) i  < l/L’). This proves to be unsatisfactory before the condition is met 
for the WKB approximation to hold (which is, in effect, that qz B l/L). Therefore 
M75 is extended to cases where no real caustics exist (for present purposes, a ‘ caustic’ 
may be thought of as lines along which the WKB solution is singular). A more detailed 
exposition is given by Smith (1980). 

The notation parallels 92: x is in the cross-jet direction, y increases downstream 
and z upwards, and (contrary to McKee’s notation but consistent with 92) the 
incident angle is reckoned between the direction of flow and of far-field wave 
propagation. Also, alphabetical subscripts denote partial differentiation. 

Non-dimensional quantities are formed using the lengthscale of the current 
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variations ‘ L’ (horizontal) and also some of the far-field wave quantities (e.g. k = w / g ,  
c = g / w ,  as in ‘region 1 ’ of the top-hat jet) 

Asins2, thewave-related quantitiesareconsideredtoshare thefactorexp (ipy- i d ) .  
Assuming similar velocity profiles among jets (although of different widths and 
strengths), three parameters determine the problem; these may be taken as L’ 
(=  k ,  L) ,  V’ (=  v/cl a t  the centre of the jet, where x = 0) ,  and p (=  ncose, which 
is constant across the jet). We shall consider only surface gravity waves on 
homogeneous deep water, with negligible vertical shear (so that, for example, n = dz, 
and so the results can be compared with those for the narrow jets). 

An appropriate leading term for the solution when there are two caustics is shown 
by McKee (1975, equations (30)-(32)) to be provided by (dropping the primes) 

P x n enz ei(pg-ot) - E(a2L, Lb)  A ,  
( r t Y  

~ i ( b ~ - - a ~ )  = n2(x)-p2, (4.3) 

(4.4) 

Here A is a constant, and d, and d, are the locations of the caustics, a t  which p2 = n2. 
I n  the above, E(s,  t )  is the complex solution of the parabolic-cylinder equation, 
appropriate to  a single outgoing wave as x++ co, as described by e.g. Abramowitz 
& Stegun (1965, henceforth AS65, p. 693). For t % si, E(s, t )  has the form 

E(s, t )  = F(s,  t )  eiX@, t ) ,  (4.5) 

where F and X are real, and it follows from identities given by AS65 that, for t << -51, 

where F = F(s ,  -t)  and X = X(s ,  - t ) ,  but otherwise the same. The first term 
represents the incident wave, and the second the reflected portion; the ratio of their 
magnitudes gives the reflection coefficient found by McKee (1975) : 

(4.7) R = (1 + e-znS)-i = (1 + e-2na2L)--t. 

To relate amplitudes to  the incident amplitude, the asymptotic behaviour of the 
incident portion must be examined. As t2+co, the amplitude function F(s,t)  
approaches the form 

Using this and noting, from (4.3), that 

r2ri + 4(1-p2) as 1x1+00, (4.9) 
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we find the incident portion of the pressure amplitude at  the surface z = 0 approaches 
the value 

(4.10) 

which is defined as unity, and from which the constant A is found. The wave pressure, 
relative to a unit incident amplitude, is hence written to leading order as 

(4.11) 

This is extended to include cases with no real caustics as follows. 
When there are no caustics, the reflection must be less than when caustics are 

present, hence a2 must become negative. To evaluate a2, we require as before that 
r = -2a a t  x = d, and r = 2a a t  x = d,, but now d, is an imaginary (or complex) 
position of a ‘caustic’, extending the analytic description of the current in the 
imaginary direction. Thus, replacing x with it, we suppose 

(4.12) 

When n ( x )  is an even function of x ,  this presents no more of a task than (4.5) did 
before. This approach should be used cautiously ; in the present (relatively simple) 
problem, the comparison with known limiting cases is reassuring. 

A t  the centre of the jet ( x  = r = 0) ,  (4.11) reduces to 

(4.13) 

where no = n(0). Also, we can make use of identities for W(a,  0 )  (AS65, pp. 693, 256) 
to reduce this result to a straightforward form. 

As a working model, assume that the current has the form 

(4.14) 

Away from the centre of the jet, we need to evaluate r (x ) ,  e.g. by numerical 
integration of (4.3). We also need E(s,  t ) .  Outside the caustics, expansions (AS65) of 
F(s ,  t )  and X ( s ,  t )  ought to converge. The nearest lines on or outside the caustics are 
along x = +!gcL, so we shall examine these locations next. 

For waves incident at  very small angles, for which caustics are, located close to 
1x1 = 4nL, the expansions mentioned above break down. However, the solution 
approaches that for a single caustic (i.e. the reflection is nearly complete), in which 
case Airy functions may be used (cf. McKee 1974). In fact, McKee’s 1974 results 
(henceforth M74) coincide within a percent or so with M75 over a wide range before 
the expansions break down, so we may use M74 in this limit (note that M74 would 
not be needed if the parabolic-cylinder function E(s ,  t )  were easier to evaluate). 

For a symmetrically distributed wavefield (about the current jet orientation), i t  
is again convenient to sum (spectrally) the squared amplitudes of the symmetric 
components, as in $3. The results are 

H’(x) = W ( X )  (1 - R cos 2x(a2L, v L ~ ) } ,  (4.15) 

where 
(4.16) 
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is just the factor which arises from conservation of wave action (as in the WKB limit), 
and R is the reflection coefficient defined in (4.7).  To rederive this, note that, to the 
order at which the solution is accurate, (it) (1 - 4 s / t 2 ) i P ( s ,  t )  equals unity. 

The results of M74, appropriate in the limit of total reflection, may be similarly 
normalized and, again considering the symmetric wave components together, we find 

HA(x) = W(x) 2rcr’l Ai2 ( - r ’ (x ) ) ,  (4.17) 

(4.18) i [iL 1 (n2 -p2)i  dr’]’ (Z > d ) ,  

-b$, d (p2-nZ):dx’] 8 (z < d) ,  

where 

r’(x) = 

and, as before, d is the position of the caustic. Note that, although W ( x )  is singular 
at the caustic, r‘ W is not; also, inside the caustic (in the ‘shadow zone’), both r‘ and 
Ware purely imaginary, so their product is real. At  some distance outside the caustic, 
the Airy function can be replaced by an asymptotic expansion, giving 

HA + W ( x )  ( 1 + sin 2 Y ) ,  
where 

(4.19) 

Y(z) = LJZ(nz-pz)idx’ = %(r’)i (x $ d).  (4.20) 
d 

Physically, the changes in amplitude have two causes: (1) exchanges of energy with 
the mean flow (as the current stretches or compacts the waves), described by 
conservation of wave action and represented here by the factor W(x), and (2) the 
modulation due to interference with reflections, represented by the factor 
1 -Rcos2X. 

5. Amplitude maxima for monochromatic waves 
There are two sources of localized amplitude variations : 
(1) interaction with the waveguide (in this case currents only), as described by 
conservation of wave action, and 
(2) interference with reflections. 

From the solutions discussed above (M75 and SAM), we can examine (i) the locations 
of local amplitude maxima near a current jet, and (ii) the sizes of those maxima, 
relative to incident energy. 

We shall discuss the amplitude squared in terms of 

H ( x )  = W(z) (1 + R sin 2 Y ) ,  (5.1) 

where W is the ‘action factor’ discussed above, and 

Y ( x )  = Re { jrq(x‘)  dx‘} 

is the net phase shift at  x due to just the real part of the cross-jet component of local 
wavenumber. 

(i) Locations 

The location of the energy maximum is dominated by the interference factor 
1 + R sin 2 Y in the above equation. For broad jets, the evolution of W(x) is slow by 
hypothesis. For the narrow jets, the antinodes must occur outside the jet, where 
w =  1. 
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FIGURE 4. H ( x )  vs. k,x  with real caustics, according to SAM: 6 = 30°, v/c = 0.1, and 
(a) kL = 0.2, ( b )  0.5, (c )  1, (d )  2, and ( e )  3. 

In  cases where M75 applies, compare cos 2X of (4.15) with the term sin 2 Y above : 
the expression for X ( x )  (AS65) yields 

-sln (s x 2.62088 ...) 

(5.3) 
m+ 

The first maximum is somewhere near in, while the term in brackets is always less 
than about 0.15 (which it attains near s = f), and tapers quickly to 0.012 or so for 
large s. Thus the location is very near Y = in. 

For narrow jets, we can look a t  some plots of H vs. x for a few cases, according 
to SAM. Figure 4 shows some cases where qz is imaginary. The nearest antinode moves 
with the jet boundary (which is a 'caustic'), and decreases in distance from nearly 
in (about 0.785), for the narrowest jet shown, to roughly 0.6, for kL = 3 or more. 
Figure 5 shows some cases where qz is comparable to ql.  Again, the amplitude 
maximum is located nearly where qz L + pl(x - L)  = in. (The top-hat model is not 
considered valid here for widths great enough that this location is within the jet, as 
it would be when qz L > in.) 

The consistent picture is that the local amplitude maximum is located roughly 
where Y ( x )  = in, regardless of jet width. 

(ii) Magnitude 
As just noted, the location of the amplitude maximum occurs roughly where 
sin 2 Y = 1,  so we can write 

Hmax x W(xrnax) (1  + R).  (5.4) 
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jet (SAM) this always occurs outside the jet, where W = 1. The 
consists entirely of evaluating the reflection 

f (a - :r sin2 2q, L 
R2 = > (5.5) 

or, in the limit q2 L 4 1 ,  

H,,, x 1 +q2 L 

(in any case, H must be less than 2). 

magnitude. 
For broad jets, we may examine some limiting cases to put bounds on the 

For very broad jets with strong reflection, we may write 

V ( z )  x vc- (x-d) v:, (5.7) 

where Vc is the current speed along the caustic, and V: is the shear there. A t  the 
same time, recall that V / c  is small, so we find 

V C  
H,,, x (1 + R) - (L’ sin 8Ji. v: 

Further, since we assumed large reflection, 1 + R is roughly 2. Note that, since n2 must 
be less than 1, L’ sin 8, must be greater than 1 when this approximation holds. 
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For a broad jet where the axis is nearly a caustic, we examine the analogue of M77 : 
let V(x) = Vo(1-x2), so that, again for small V/c ,  n2 x 1-4pVo(1-x2). For the 
degenerate case Vc = Vo, 2 

W,, x - (L' sin 0$, (5.9) x 
and the reflection is simply ($)$. For the alternative case, 4 p P  4 q:, 

(5.10) 

and the reflection is found from (4.7) and (4.4). Note that W < 1 for q: > 4 (or 
0 > 45O), as was also found by Garrett (1976) in the WKB limit. 

6. Comparison and joining of the models 
We now have working models at the two extremes of the range of jet widths: kL 

very small or very large. There remains the task of joining them across the 
intermediate scales. 

The approach taken here is to interpolate in the kL-direction between the narrow 
top-hat jets and the broad cosine-shaped jets we have considered so far. What value 
of velocity ( v / c ) ~  and jet width L" (=  kL) for the narrow-jet model should 
correspond to the values ( u / c ) ~ ,  L'B for the broad-jet model ? Both models are very 
sensitive to the maximum velocity, and it appears (by trial and error) that the same 
value is appropriate for the (uniform) velocity within the top-hat jet and the 
maximum velocity (at 2 = 0) within the broad cos-shaped jet. If the two jet-width 
parameters L" and L'B are related by a constant factor, plots of (say) the mid-jet 
amplitudes against log L' may be superimposed and adjusted to reveal the most 
sensible factor. At the same time, we may see how large a gap to leave along the log L' 
axis to allow smooth interpolation between results. 

The interpolation is performed for downwind waves (0, = 0' to f goo), and for five 
different values of current speed ( V / C  = 0.001, 0.003, 0.01, 0.03 and 0.1). Two 
examples are shown in figure 6. The jet-width parameters appear to be roughly 
equivalent (i.e. kLN = kLB), and a gap of about a half-decade in kL should be 
sufficient for interpolation. The location of the interpolation gap varies with the 
current velocity, favouring the narrow-jet model for weaker currents. For waves 
incident a t  moderately small angles, the (subjectively) best results are obtained with 
a gap surrounding the jet width for which the calculated mid-jet amplitudes of waves 
incident a t  the critical angle have the same magnitude according to both the narrow 
and broad models (the critical angle is where, in the narrow-jet terminology, q2 = 0;  
or, in the broad-jet terminology, where both caustics coincide along the axis of the 
jet). This position moves from about kL = 14 for v/c = 0.001 down to kL = 2.5 for 
v / c  = 0.1. For waves approaching more nearly a t  right angles to the jet (no caustics), 
better results are obtained by centring the gap where 2q2 L is near in. The gap along 
the logkL axis, in which interpolation is performed, is chosen to surround the 
minimum of these two values. 

Any error in the scale width (kL') correspondence should be magnified as we move 
away from the jet, since the position of nodes and antinodes are increasingly sensitive 
to that parameter. However, the matching of the models a t  intermediate scales of 
width seems rather to improve with distance from the jet. In  a large volume of the 
three-space (6 ,  kL, v / c ) ,  the two sets of results match within a few percent, including 
about a half-decade of values of kL (see e.g. figure 7) .  
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kl L 
FIGURE 6. Amplitude squared at the centre of a jet ( H ( 0 ) )  va. jet width (IogkL). Upper frame: 
v / c  = 0.001 ; ( a )  0 ,  = 0.6', ( b )  2.2', (c) 3.4', (d) Pit = 3.62'. ( e )  4.8', (f)  7.6', (9) 90' (uniformly = 1) .  
Lowerframe: v/c = 0.1; (a )  6, = 5.2', ( b )  18.7', (c) 30.9', (d )  32.3', ( e )  Pit = 32.94', (f) 35.6', (9 )  
40.7', (h)  90'. 

Now let's look a t  some 'wave-component gains', defined as the squared amplitude 
a t  a given location relative to unit incident energy evenly split between + 8 and - 8 
(i.e. considering the symmetric case). These were computed a t  four locations (x = 0, 
;nL, EL,  27cL); for example, the gains for v/c = 0.1 are plotted as contours on the 
p us. log kL plane for x = 0 (figure 8) and for x = 47cL (figure 9). A t  x = 0 the variation 
in gain occurs near the critical angle, and the gain can be quite large; the maximum 
gain increases without bound as the jet width increases. In  contrast (but not 
surprisingly), the plots for x 2 @L are characterized by regular oscillations (from 0 
to 2), due to interference alone, in the parameter range where strong reflection occurs. 

Interpolation is performed in the log kL direction, using two patterns based on the 
above. (1) At x = 0, the q1 us. log kL plane is divided evenly in the log EL direction 
(12 points per decade), but incident angles are chosen to cluster near the critical angle 
to resolve the sharp change there. Gaps of 4 to 1 decade in kL were tried, and the 
best looking results appear at about 1 decade (i.e. a factor of about 6 in kL).  (2) For 
the off-axis amplitudes, the log kL spacing is finer (24/decade), and equally spaced 
values of q1 (=  sin 8) were used, finely spaced enough to resolve the nodes and 
antinodes for jet widths up to about kL = 40 with at lea& 6 points per cycle (totalling 
513 values). The log kL density is increased so that, for interpolation, several points 
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FIQURE 8. Contours of H ( 0 )  on the logk, L vs. p plane for v/c = 0.1 (i.e. amplitude squared on the 
jet width vs. cos 8, plane). Contour interval is 4. In the region where it's indicated H > 2, the values 
can be quite large (increasing without bound as jet width increases). 



Surface gravity waves crossing weak current jets 295 

P 
FIGURE 9. Contours of H @ L )  on the log k L  vus. cos el plane. In area shaded with horizontal lines 
H < $. In the stippled region # < H < 6. In the blank regions, either 4 < H < 2 or the contours are 
too complex to show. 

remain in the same quarter-cycle ,in the LL-direction, as well as in the q-direction. 
Since the models agree more closely away from x = 0, the width of the gap is reduced 
to about decade (or a factor of about 2 in kL). 

Three- to ten-point Lagrangian interpolations were tried, and the results over test 
sections near the gap are generally best reproduced with 6 points (e.g. in the cases 
shown in figure 9 the interpolated values generally remain between the two model 
results). The variations induced by changing the number of interpolation points, or 
by changing the position of the interpolated region between the models, indicates that 
the accuracy is probably better than 5 %. When integrating over a reasonable 
directional spectrum, some of this error, which is symmetric between the peaks and 
troughs, is likely to cancel, so the net error estimate can be reduced. 

Net gains integrated over symmetric directionul spectra 

The simplest directional spectrum to consider, consistent with the observations, is 
cos2 13 dI3 (where 0, as usual, refers to the angle between the jet axis and the direction 
of wave propagation outside the jet). Integration over this directional distribution 
is performed at  the locations x = 0, ~ R L ,  RL and 27cL. The net squared amplitude is 
shown in a 3-dimensional perspective plot (figure lo), using a spline interpolation to 
fill in across values of x. The two cases shown are v/c = 0.01 and 0.1, and the third 
dimension in each picture is kL, the scale width of the jet. For v/c = 0.01, the net 
variations are nearly negligible. For narrow jets (kL < 2 or so) the variations are 
negligible regardless of current strength (up to v/c = 0.1). As the jet width increases, 
the minimum amplitude (along the axis) approaches a value depending only on the 
current strength. The transition from narrow- to broad-jet ' behaviour ' occurs in the 
range 0.1 5 kL 5 3 or so. This is mostly in the parameter range where SAM is held to 
apply, and partly within the region of interpolated values. 
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FIGURE 10. Three-dimensional perspective plot of the net amplitude squared vs. x/nL vs. log k, L, 
with a cos2 8, d8 incident directional distribution. 

It has been suggested that, at least in a developing wavefield, the directional 
distribution may be bimodal, with, for example, maxima where c = W cos 8 (where 
19 is the angle between the direction of wave propagation, with speed c ,  and the wind 
velocity W - see Longuet-Higgins 1977; Phillips 1977). Since i t  appears that  the 
transition from narrow to broad behaviour occurs in the parameter range where SAM 
applies, we shall look a t  some sample bimodal distributions using just SAM, the simple 
model. Figures 11 and 12 show H(x) against kx for various jet widths, with and 
without some degree of bimodality. The directional spectra, in terms of q1 = sin$, 
is shown a t  the top of each figure. The first (figure 11) is just the cos2 8 d8 distribution 
discussed above; the agreement is quite good up to  about kL = 3. To bring the centre 
amplitude back up to 1 in a jet with width kL = 3 requires a distribution as bimodal 
as that  of figure 12, where the components near 8 = 0' have only half the energy 
density of the favoured components (in this case near 8 = 15'; F(g)  is designed to  
have the same first moment as cos2 8 d8). Thus, even with significant bimodality, the 
amplitude a t  the centre of a downwind directed jet can remain unenhanced. 

7. Conclusions and discussion 
The main conclusions to be drawn are as follows. 
(1) The net wave amplitude a t  the centre of a downwind-directed current jet is in 
general smaller than that outside the jet, owing to  the exclusion by reflection of 
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the wave components propagating nearly parallel to the jet. Since refraction also 
increases the wavelength of those waves that do penetrate to the interior, the 
resulting wave steepness is reduced even further relative to outside. 
(2) Narrow jets cause little change in amplitude. A slight suppression a t  the centre 
of downwind jets is found for all wave components, in contrast with the rather large 
amplifications found for certain components incident on a broad, slowly varying 
current jet. This is due to the destructive interference with reflections off the far 
side, forming a node which extends across such a narrow jet. 
(3) The horizontal scale of adjustment of the wave motion appears to be small. For 
example, the scale of amplitude smoothing across the edges of the top-hat jet 
decreases from about (3L)-’ for wider jets to about (L/4k)a for the narrower jets, 
as compared with the vertical smoothing scale of about (2k)-’. 
(4) For a monochromatic wave, the amplitude maximum nearest the jet occurs as 
if the reflection at the caustic is advanced in phase by about t cycle, no matter 
what the scale of the reflecting current is. In  other words, if q(x) is the cross-jet 
component of the local wavenumber a t  z, the closest amplitude maximum occurs 
nearly where Re J,” q(x’) dx’ = in. The size of this maximum is given by W ( x )  (1  + R), 
where R is the net reflection, and W ( x )  is just the change in amplitude given by 
conservation of wave action (as in the WKB limit) a t  the site of the antinode. 
This study was intended to explore the possibility that wind-wave amplitudes 

might be enhanced within the downwind-directed current maxima associated with 
‘wind streaks’ or ‘Langmuir circulation’, as was suggested in the observations of 
Myer (1971). The present results, however, indicate the contrary: if anything, wave 
amplitudes should be decreased within such ‘current jets ’, due to the wave/current 
interaction. 

The question of whether the wave amplitudes are enhanced or not bears on the 
suggestion (Garrett 1976) that  any preferential wave dissipation within such jets 
would provide direct reinforcement of the jet strength. This, combined with an effect 
of the waves producing a surface convergence along such a downwind jet, would 
provide an instability mechanism for the formation and persistence of the rather 
regularly observed wind streaks. As has been noted elsewhere (e.g. Craik 1977; 
Liebovich 1977), the instability mechanism itself is viable even without such a 
varying dissipation. The surface-convergence-producing effect of the waves on such 
a flow combined with a uniform surface stress is sufficient, since the advection toward 
the jet axis of water accelerating downwind serves to reinforce the jet. 

Since the refraction of the waves by a downwind jet increases the wavelengths 
within relative to outside, the wave steepness would be decreased even more than 
the amplitude. Although this by itself would decrease the tendency toward wave 
breaking within such jets, it  should be noted that, for a downwind jet confined near 
the surface (compared to the wave vertical scale), a countering tendency toward more 
dissipation can occur through the effect described by Phillips & Banner (1974) : the 
current serves to bring the surface fluid velocity closer to the phase velocity of the 
wave. Interested readers are referred to Smith (1980). 
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